Расчет электрических цепей однофазного синусоидального тока

Закон Ома Расчет электрических цепей Электрические машины переменного тока Электронные усилители и генераторы Трехфазные выпрямители

Синтез активных полосовых фильтров

ARC-фильтры представляют собой комбинацию пассивной RC-цепи и активного элемента. В качестве последнего чаще всего используются операционные усилители часто с двумя входами – инвертирующим и неинвертирующим. В схемах ARC-фильтров обязательно имеется обратная связь. Известно [1, 2], что передаточная функция любой активной цепи с обратной связью записывается как

где Нус(р) и Нос(р) передаточные функции цепи прямого усиления и цепи обратной связи соответственно. Знаменатель Н(р) – это полином, например, второй степени. Корни его, т. е. полюсы Н(р) могут быть в том числе и комплексно-сопряженными. Последнее означает, что ARC-цепь эквивалентна пассивной LC-цепи, а т. к. LC-цепь обладает избирательными свойствами, то и ARC-цепь тоже может обладать избирательными свойствами, т. е. является фильтром.

Синтез ARC-фильтров, как и пассивных LC-фильтров, состоит из двух этапов: этапа аппроксимации и этапа реализации. Этап аппроксимации в обоих случаях одинаков. Этап реализации для ARC-фильтров – отличается от LC-реализации.

Этап реализации. Вначале осуществляют переход от передаточной функции НЧ-прототипа, которая имеет вид (2.6), к передаточной функции полосового фильтра. Один из возможных вариантов такого перехода основан на использовании формулы пересчета полюсов НЧ-прототипа в полюсы ПФ:

  

где

 – полюсы передаточной функции НЧ-прототипа;

w0 = 2pf0 – находится по (2.1).

Согласно (2.11) одной паре комплексно-сопряженных полюсов нормированной передаточной функции НЧ-прототипа соответствует две пары комплексно-сопряженных полюсов денормированной передаточной функции полосового фильтра. Одному вещественному полюсу (рнч.нор = s + j0) нормированной H(р) НЧ-прототипа (2.6) соответствует одна пара комплексно-сопряженных полюсов вида  денормированной H(р) полосового фильтра. В результате общий порядок ПФ удваивается по сравнению с порядком НЧ-прототипа.

Передаточную функцию ПФ удобно представлять произведением сомножителей второго порядка H1(р), H2(р), H3(р) и т. д. Каждый из этих сомножителей реализуется в виде активного RC-звена второго порядка, а полученные звенья соединяются каскадно, образуя полную схему ПФ. Звенья ARC-фильтров в общем случае являются типовыми (одинаковыми) для фильтров, имеющих одинаковое расположение полосы пропускания на шкале частот.

3. Пример расчета полосового LC-фильтра

Согласно заданию на курсовую работу на входе полосового фильтра действуют периодические радиоимпульсы (рис. 1.1) с параметрами: период следования импульсов Tи = 800 мкс; длительность импульсов tи = 200 мкс;  период несущей частоты Tн = 33,3 мкс; амплитуда колебаний несущей частоты Um.н = 5 В. Фильтр должен обеспечить максимально допустимое ослабление в полосе пропускания Аmax = DA = 3 дБ. Полное ослабление на границах полос непропускания Апол = 24,2 дБ. Сопротивления нагрузок фильтра слева и справа Rг = Rн = 1 кОм (рис. 2.2). Характеристика фильтра аппроксимируется полиномом Чебышева.

3.1. Расчет амплитудного спектра
радиоимпульсов

Прежде чем приступать непосредственно к расчету фильтра, необходимо определить частотный состав сигнала, поступающего на вход фильтра, т. е. рассчитать и построить график амплитудного спектра периодических радиоимпульсов, взяв за основу рис. 1.2.

Вначале находится несущая частота:

Затем рассчитывают частоты нулей огибающей спектра. Они зависят от длительности импульса:

Максимальное значение огибающей в виде напряжения, соответствующее частоте fн, находится по формуле

  

Зная максимальное значение и расположение нулей по оси частот, строим огибающую дискретного спектра периодических радиоимпульсов в виде пунктирной кривой в масштабе по оси частот (рис. 1.2).

Внутри огибающей находятся спектральные составляющие или гармоники спектра с частотами fi, где i – номер гармоники. Они располагаются симметрично относительно несущей частоты, зависят от периода следования импульсов и находятся по формуле

.

Учитывая, что

рассчитываем частоты гармоник, лежащих только справа от fн:

Частоты гармоник, лежащих слева от fн, будут:

Амплитуды напряжения i-ых гармоник находятся по формуле

  

где K = tи/Tн – количество периодов несущих колебаний косинусоидальной формы в импульсе. Например, на рис. 1.1 К = 4, а в рассматриваемом примере К = 6.

Из анализа рис. 1.2 видно, что главный «лепесток спектра» занимает диапазон частот от 25 до 35 кГц. Крайние частоты диапазона совпадают с нулями огибающей, поэтому их амплитуды равны нулю, в частности Um.4 = 0, Um.(–4) = 0.

После расчета амплитуд по (3.2) их значения отражаются в виде дискретных составляющих внутри огибающей спектра (рис. 1.2).

Полезно обратить внимание на характерную особенность спектра, связанную с понятием скважности импульсов. Если скважность q, т.е. отношение периода следования импульсов Tи к длительности импульсов tи, равна целому числу, то в спектре отсутствуют гармоники с номерами, кратными скважности. В рассматриваемом примере q = 4, поэтому в спектре будут отсутствовать (совпадать с нулями огибающей) 4, 8, 12 и т.д. гармоники слева и справа от несущей частоты.

3.2. Формирование требований к полосовому фильтру

Учитывая, что амплитуды спектральных составляющих на частотах 25 и 35 кГц равны нулю, примем за эффективную часть спектра, которую нужно выделить полосовым фильтром, диапазон частот от 26,25 кГц до 33,75 кГц. Следовательно, эти частоты будут определять частоты границы полосы пропускания фильтра fп1 и fп2 соответственно (рис. 2.1, б). Граничную частоту полосы непропускания fз2 выбираем равной частоте первой гармоники спектра сигнала, находящейся после частоты (fн + 1/tи) = 35 кГц. Этой частотой является частота f5 = 36,25 кГц. Следовательно, fз2 = = f5 = 36,25 кГц.

Используя (2.1), найдем центральную частоту ПП:

Тогда граничная частота fз.1 полосы непропускания будет

Минимально-допустимое ослабление фильтра в ПН зависит от разницы амплитуд гармоник f3 и f5 спектра сигнала на выходе фильтра, выраженной в децибелах и заданной величиной Апол – полного ослабления:

  

где

 

исходная разница амплитуд третьей и пятой гармоник в децибелах, найденная в ходе расчета спектра радиоимпульсов.

Согласно (3.2):

По (3.4) находим

а из (3.3)

Таким образом, требования к полосовому фильтру сводятся к следующему:

Аппроксимация передаточной функции должна быть выполнена с помощью полинома Чебышева.

3.3. Формирование передаточной функции
НЧ-прототипа

Используя (2.2), находим граничные частоты ПП и ПН НЧ-прототипа.

По формулам (2.3) получаем значения нормированных частот

Требования к НЧ-прототипу могут быть проиллюстрированы рисунком 3.1.

Находим коэффициент неравномерности ослабления фильтра в ПП из рассмотрения (2.5) при A = DA и W = 1, когда y(1) = Тm(1) = 1:

Подпись:  
Рисунок 3.1

Порядок фильтра Чебышева находится также из рассмотрения (2.5), но при A = Amin и W =Wз, т. е. ослабление рассматривается в полосе непропускания. А в ПН полином Чебышева Тm(W) = chmarchW, поэтому

  

Для вычисления функции archх рекомендуется соотношение

После подстановки в (3.5) исходных данных и вычислений получим m = 2,9. Расчетное значение m необходимо округлить в бóльшую сторону до целого числа. В данном примере принимает m = 3.

Примечание. При достаточно точных расчетах значение m во всех вариантах задания должно лежать в пределах 2 < m < 3. Если так не получилось необходимо обратиться за консультацией на кафедру.

Подпись: Таблица 3.1
DА, дБ	Порядок m = 3
0,2
0,5
1,0
3,0	-0,814634;    -0,407317   j1,11701
-0,626457;  -0,313228   j1,021928
-0,494171;  -0,247085   j0,965999
-0,29862;      -0,14931   j0,903813
Пользуясь таблицей 3.1, находим полюсы нормированной передаточной функции НЧ-прототипа:

  

Обратить внимание на то, что полюсы расположены в левой полуплоскости комплексной переменной р.

Формируем нормированную передаточную функцию НЧ-прототипа в виде

где v(р) – полином Гурвица, который можно записать через полюсы:

Производя вычисления, получим

 

Обратить внимание на то, что в (3.7) числитель равен свободному члену полинома знаменателя.

При расчетах необходимо придерживаться точности не менее шести значащих цифр после запятой.

Расчет сечения проводов по допустимому нагреву