Дифференциальное исчисление функции одной переменной Дифференциальное и интегральное исчисление Пространство действительных чисел Приложение последовательностей в экономике

Математика примеры решения задач


Бесконечно малые и бесконечно большие последовательности и их свойства.

Определение (бесконечно малая последовательность). Бесконечно малая последовательность — последовательность, предел которой равен 0. То есть

limn ® Ґ xn = 0
или более подробно с учетом определения предела " e>0 $ N: " n>N |xn| < e Ю xn.

Пример 20. Последовательность xn = 1/n

является бесконечно малой последовательностью.

Определение 28 (бесконечно большая последовательность). xn – бесконечно большая последовательность, если " c>0 $ N: " n>N |xn|>c.

Пример 21. Последовательности n, 2n являются бесконечно большими.

Следует различать неограниченную и бесконечно большую последовательности. Всякая бесконечно большая последовательность является неограниченной, однако неограниченная не обязательно является бесконечно большой. Рассмотрим следующий пример.

Пример 22. Пусть xn = 1,1/2,3,1/3,5,1/4,..., нетрудно заметить, что данная последовательность состоит из двух составляющих, а именно x2k-1 = 2k-1, x2k = 1/(k+1). Данная последовательность неограниченная, так как содержит неограниченную составляющую x2k-1 = 2k-1, но не является бесконечно большой, так как содержит вторую часть x2k = 1/(k+1).

Очевидно следующее утверждение. Вычисление определенного интеграла Что касается приемов вычисления определенных интегралов, то они практически ничем не отличаются от всех тех приемов и методов, которые были рассмотрены выше при нахождении неопределенных интегралов.

Лемма 1. Если an — бесконечно малая последовательность, то 1/ an —бесконечно большая последовательность.

Пример 23. Пусть an = 1/n, которая является бесконечно малой, тогда последовательность b n = 1/a n = n будет бесконечно большой.

Теорема 5 . Для того чтобы последовательность {xn} имела предел, равный A необходимо и достаточно, чтобы ее члены имели вид

xn = A+ an,
где
lim n ® Ґ an = 0.

Справедливы следующие свойства бесконечно малых последовательностей, которые легко получить из определения бесконечно малой последовательности.

Теорема 6. (свойства бесконечно малых последовательностей)

  1. Сумма и разность двух бесконечно малых последовательностей является бесконечно малой последовательностью.
  2. Произведение ограниченной последовательности на бесконечно малую последовательность является бесконечно малой последовательностью.

Следствие 1. Произведение конечного числа бесконечно малых последовательностей является бесконечно малой последовательностью.
Алгебраическая сумма конечного числа бесконечно малых последовательностей является бесконечно малой последовательностью.

 

Ведение в математический анализ Последовательности. Определение и примеры числовой последовательности. Пределы числовой последовательности. Свойства сходящихся числовых последовательностей. Поведение монотонных и ограниченных числовых последовательностей. Число . Векторные последовательности. Сходимость векторных последовательностей.
Интегральное исчисление функции одной переменной