Интегральное исчисление функции одной переменной

Неопределенный интеграл Определение (первообразная). Функция F(x) называется первообразной функцией для функции f(x) на множестве XН R, если в каждой точке этого множества F'(x) = f(x).

Таблица интегралов Ранее была указана таблица производных от основных элементарных функций Приведем таблицу основных интегралов. Справедливость ниже указанных формул легко проверить дифференцированием.

Предел последовательности

Элементы теории множеств Понятие множества Множество – совокупность некоторых объектов. Примерами множеств являются множества чисел, множества точек прямой, множество линий и др. Каждое отдельное множество задается правилом или законом, позволяющим судить, принадлежит объект данному множеству или нет

Операции над множествами

Свойства операций над множествами. Из определений объединения и пересечения множеств следует, что операции пересечения и объединения обладают следующими свойствами

Функции и отображения. Определение. Функцией f , действующей из множества X в множество Y (f: X ® Y) называется правило или закон, по которому каждому элементу x О X ставится в соответствие один или несколько y О Y. Если каждому x ставится в соответствие один y , то функция называется однозначной.

Виды отображений. Отображение называется инъекцией, если для любых элементов x1, x2 О X, для которых f(x1) = f(x2) следует, что x1 = x2.

Мощность множеств. Как мы можем сравнить два конечных множества? Мы можем, например, сосчитать количество элементов в каждом из них и таким образом сравнить. Но можно поступить иначе, попытаться установить биекцию между элементами. Ясно, что биекцию между двумя конечными множествами можно установить только при условии что количество элементов в них одинаково. Именно второй способ годится для сравнения бесконечных множеств. Среди бесконечных множеств простейшим является множество натуральных чисел.

Приложения определенного интеграла к решению некоторых задач механики.

1.Моменты и центры масс плоских кривых. Если дуга кривой задана уравнением y=f(x), a≤x≤b, и имеет плотность =(x), то статические моменты этой дуги Mx и My относительно координатных осей Ox и Oy равны

моменты инерции IХ и Iу относительно тех же осей Ох и Оу вычисляются по формулам а координаты центра масс и — по формулам где l— масса дуги, т. е.

2. Физические задачи. Некоторые применения определенного интеграла при решении физических задач иллюстрируются ниже в примерах.

Скорость прямолинейного движения тела выражается формулой (м/с). Найти путь, пройденный телом за 5 секунд от начала движения.

Так как путь, пройденный телом со скоростью (t) за отрезок времени [t1,t2], выражается интегралом то имеем:

Уравнение механического движения. Пусть материальная точка массы т движется под действием силы F по оси х. Обозначим t время ее движения, и — скорость, а — ускорение. Второй закон Ньютона, аm = F примет вид дифференциального уравнения, если записать ускорение, а как вторую производную: a=x’’.

Уравнение тх" = F называют уравнением, механического движения, где x = x(t)—неизвестная функция, т и F — известные величины. В зависимости от условий задачи по-разному и записываются различные дифференциальные уравнения.

Радиоактивный распад — масса распадающего вещества. Количество распадающего вещества пропорционально количеству и времени, т.е. при имеем

.

Решение дифференциального уравнения- . Дополнительные условия- , тогда задача

Начертательная геометрия Машиностроительное черчение Моделирование Математика Физика