Дифференциальное и интегральное исчисление

Производные и дифференциалы высших порядков Предположим, что функция f'(x) является дифференцируемой в некоторой точке x интервала (a,b), то есть имеет в этой точке производную. Тогда данную производную называют второй произвоьдной и обозначают f(2)(x), f''(x) или y(2), y''(x). Аналогично можно ввести понятие второй , третьей и т. д. производных.

Определение. Значение d(dn-1y) дифференциала от(n-1)-го дифференциала при d x = dx, называется n-м дифференциалом функции y = f(x) и обозначается dny.

Производная параметрически и неявно заданных функций Пусть x = f (t),y = y (t), tО [a,b] - достаточно гладкие функции. Тогда говорят, что функция задана параметрически. Примером параметрически заданной функции является уравнение окружности: x = acos t,y = asin t, tО [0,2p]. Рассмотрим вопрос о нахождении производных y = y(x) по переменной x.

Основные теоремы дифференциального исчисления Рассмотрим ряд важных теорем, которые полезны при исследовании функции. Теорема Ролля является частным случаем теоремы Лагранжа.

Правило Лопиталя Будем говорить, что отношение функций f(x)/g(x) представляет собой неопределенность вида 0/0 при x® a, если limx® af(x) = limx® ag(x) = 0. Замечание. Если производные f'(x),g'(x) удовлетворяют тем же требованиям, что и сами функции, то правило Лопиталя можно применить повторно, т.е. предел отношения первых производных можно заменить пределом отношения вторых производных и т.д. Теорема (теорема Тейлора). Пусть функция f(x) имеет в точке x = a и некоторой ее окрестности производные порядка n+1.

Выпуклость функции. Точки перегиба Определение . Множество точек на плоскости называется выпуклым, если отрезок, соединяющий любые две точки этого множества, целиком содержится в этом множестве. Геометрический смысл теоремы состоит в том, что если f'(x) возрастает (убывает) на множестве X, то возрастает (убывает) угол наклона касательных к графику. Это и означает выпуклость функции вниз (вверх).

Асимптоты графика функции Определение (вертикальная асимптота). Прямая x = a называется вертикальной асимптотой графика функции y = f(x), если хотя бы один из пределов limx® a+0f(x) или limx® a-0f(x) равен +Ґ или -Ґ.

Общая схема исследования функций и построение их графиков

Экономический смысл производной Ранее было установлено, что производительность труда есть производная объема продукции по времени. Рассмотрим еще некоторые понятия, иллюстрирующие экономический смысл производной.

Пример. Как связаны предельные и средние полные затраты предприятия, если эластичность полных затрат равна 1?

Максимизация прибыли

Приложение дифференциального исчисления к решению некоторых задач механики.

1. Работа. Найдем работу, которую совершает заданная сила F при перемещении по отрезку оси х. Если сила F постоянна, то работа А равна произведению F на длину пути. Если сила меняется, то ее можно рассматривать как функцию от х: F = F(x). Приращение работы А на отрезке [х, x+dx] нельзя точно вычислить как произведение F(x)dx, так как сила меняется, на этом отрезке. Однако при маленьких dx можно считать, что сила меняется незначительно и произведение представляет главную часть , т. е. является дифференциалом работы (dA = = F(x)dx). Таким образом, силу можно считать производной работы по перемещению.

Заряд. Пусть q — заряд, переносимый электрическим током через поперечное сечение проводника за время t. Если сила тока / постоянна, то за время dt ток перенесет заряд, равный Idt. При силе тока, изменяющейся со временем по закону / = /(/), произведение I(t)dt дает главную часть приращения заряда на маленьком отрезке времени [t, t+-dt], т.е.- является дифференциалом заряда: dq = I(t)dt. Следовательно, сила тока является производной заряда по времени.

Масса тонкого стержня. Пусть имеется неоднородный тонкий стержень. Если ввести координаты так, как показано на рис. 130, то функция т= т(1) — масса куска стержня от точки О до точки /. Неоднородность стержня означает, что его линейная плотность не является постоянной, а зависит от положения точки / по некоторому закону р = р(/). Если на маленьком отрезке стержня [/, / + d/] предположить, что плотность постоянна и равна р(/), то произведение p(/)d/ дает дифференциал массы dm. Значит, линейная плотность — это производная массы по длине.

Теплота. Рассмотрим процесс нагревания какого-нибудь вещества и вычислим количество теплоты Q{T), которое необходимо, чтобы нагреть 1 кг вещества от 0 °С до Т. Зависимость Q=Q(T) очень сложна и определяется экспериментально. Если бы теплоемкость с данного вещества не зависела от температуры, то произведение cdT дало бы изменение количества теплоты. Считая на малом отрезке [T, T+dT] теплоемкость постоянной, получаем дифференциал количества теплоты dQ = c(T)dT. Поэтому теплоемкость — это производная теплоты по температуре.

Снова работа. Рассмотрим работу как функцию времени. Нам известна характеристика работы, определяющая ее скорость по времени, — это мощность. При работе с постоянной мощностью N работа за время dt равна Ndt. Это выражение представляет дифференциал работы, т.е. dA = N(t)dt, и мощность выступает как производная работы по времени.

Все приведенные примеры были построены по одному и тому знакомыми нам из курса физики: работа, перемещение, сила; заряд, время, сила тока; масса, длина, линейная плотность; и т. д. Каждый раз одна из этих величин выступала как коэффициент пропорциональности между дифференциалами двумя других, т. е. каждый раз появлялось соотношение вида dy = k(x)dx. На такое соотношение можно смотреть как на способ определения величины k(x). Тогда k(x) находится (или определяется) как производная у по х. Этот вывод мы и фиксировали в каждом примере. Возможна и обратная постановка вопроса: как найти зависимость у от х из заданного соотношения между их дифференциалами.

Начертательная геометрия Машиностроительное черчение Моделирование Математика Физика