Условия наблюдения интерференции. Вычислить интегралы Примеры решения задач

Точки пересечения Построение разверток поверхностей Метрические характеристики Ортогональное проецирование Многогранные поверхности Кривые поверхности Комплексные чертежи плоскостей Проекции прямого угла Примеры решения


При построении развертки пирамида применяется способ треугольника. Развертка боковой поверхности пирамиды представляет собой плоскую фигуру, состоящую из треугольников - граней пирамиды и многоугольника - основания. Поэтому построение развертки пирамиды сводится к определению натуральной величины основания и граней пирамиды.

Комплексные задачи

Комплексными называются задачи, в которых на искомое наложены два условия и более. Их решение выполняется по следующей общей схеме:
1) вводятся вспомогательные геометрические фигуры (множества), каждая из которых, в отдельности удовлетворяет одному из условий, наложенных на искомое;
2) определяется искомое как результат пересечения введенных в задачу вспомогательных множеств.
При решении конкретной комплексной задачи первый пункт приведенной выше общей схемы необходимо расшифровать, т. е. точно указать, сколько и какие именно вспомогательные множества (по виду и положению) должны быть введены для определения искомого. Этот вопрос может быть решен только после проведения анализа условий задачи.
Анализ является первым этапом решения задачи. Он преследует следующие цели:
а) выявить искомое, изучить заданные геометрические фигуры и представить их пространственное расположение;
б) установить взаимосвязь искомого с каждой из заданных геометрических фигур и определить условия, которым он должен удовлетворять; каждое выявленное условие должно быть однозначным;
в) выявить геометрические фигуры, каждая из которых является множеством элементов, удовлетворяющих одному из условий, наложенных на искомое; количество множеств равно количеству условий. Практикум решения задач по начертательной геометрии Виды проецирования Проекции точки Проекции плоскости Многогранники Проекции кривой линии

Таким образом, анализ позволяет наметить содержание и последовательность пространственных операций, необходимых для определения искомого, т. е. составить алгоритм решения задачи.
Вторым этапом решения задачи является исследование. Исследование проводится с целью выявления условий существования решения и числа решений. Выше было указано, что искомое определяется как результат пересечения некоторого числа вспомогательных геометрических фигур (множеств). Поэтому при исследовании необходимо иметь в виду следующее:

1. Две алгебраические поверхности порядков q1 и q2 пересекаются в общем случае по кривой порядка q1 x q2. В некоторых частных случаях эта кривая распадается на кривые более низких порядков.
2. Алгебраическая кривая порядка m пересекает произвольную плоскость в m точках.
3. Три алгебраические поверхности порядков q1, q2 и q3 пересекаются в общем случае в q1 x q2 x q3 точках, и, следовательно, поверхность порядка q и линии порядка m пересекаются в общем случае в q x m точках.

Примечание. В числе указанных точек пересечения могут быть мнимые и совпавшие.
Только после составления алгоритма и исследования задачи можно приступать к третьему заключительному этапу ее решения - построению на комплексном чертеже, - т. е. к графической реализации алгоритма. При этом следует выполнить в установленной алгоритмом последовательности известные из предыдущих разделов курса элементарные построения, не задумываясь уже над расположением заданных и возникающих в пространстве геометрических фигур.
Решая ту или иную задачу на комплексном чертеже, нужно выбрать такой путь, который позволит найти искомое при наименьшем количестве графических построений. Решение в этом смысле, как правило, будет и более точным. Выбор рационального пути не зависит от алгоритма решения задачи и является вопросом, связанным только с построением. При решении комплексных задач приходится пользоваться множествами [1].

Соприкасание поверхностей 2-го порядка можно рассматривать как частный случай их пересечения. При этом справедливо следующее положение: если биквадратная кривая линия пересечения двух поверхностей второго порядка распадается на пару совпавших кривых 2-го порядка или на четыре совпавшие прямые, то имеется касание поверхностей по линии 2-го или 1-го порядка соответственно.
Начертательная геометрия комплексные чертежи Машиностроительное черчение