Аналитическая геометрия http://ecper.ru/ Молекулярная физика http://arthicto.ru/

Точки пересечения Построение разверток поверхностей Метрические характеристики Ортогональное проецирование Многогранные поверхности Кривые поверхности Комплексные чертежи плоскостей Проекции прямого угла Примеры решения


При построении развертки пирамида применяется способ треугольника. Развертка боковой поверхности пирамиды представляет собой плоскую фигуру, состоящую из треугольников - граней пирамиды и многоугольника - основания. Поэтому построение развертки пирамиды сводится к определению натуральной величины основания и граней пирамиды.

Ортогональное проецирование

Если направление проецирования перпендикулярно плоскости проекций, параллельное проецирование называется ортогональным (прямоугольным)
s П1(AA1) П1. В этом случае проекция А1, точки А называется ортогональной, или прямоугольной (рис. 1.9). В противном случае проецирование называется косоугольным.

 pr2_14.JPGРис. 1.9

Ортогональное проецирование, являясь частным случаем параллельного, значительно упрощает построение проекций геометрических фигур и является основным при выполнении комплексных чертежей технических форм (рис. 1.10). Рассмотренные в предыдущих параграфах однопроекционные чертежи геометрических фигур являются необратимыми.



pr2_20.JPG Рис 1.11

По ним нельзя мысленно воссоздать пространственную форму и размеры изображенного объекта. Существуют различные способы устранения этого недостатка однопроекционных чертежей в зависимости от принятого вида проецирования. Например, при центральном проецировании точку можно проецировать из двух различных центров (рис. 1.12), при параллельном - при помощи двух различных направлений, при ортогональном - на две пересекающиеся плоскости. Нетрудно заметить, что в каждом из этих случаев получаются две проекции А1, и А'1, точки А, однозначно определяющие ее положение в пространстве. Следовательно, обратимый чертеж геометрической фигуры должен содержать не менее двух проекций каждой ее точки.

pr2_15.JPGРис. 1.12

При построении ортогональных проекций точки на две пересекающиеся плоскости проекций П1 и П2 (рис. 1.12) угол между ними принимается равным 90o. В технике применяются следующие виды обратимых чертежей:
1) комплексные, 2) аксонометрические, 3) перспективные, 4) чертежи с числовыми отметками. В пособии рассматривается первый вид чертежей.

 

Соприкасание поверхностей 2-го порядка можно рассматривать как частный случай их пересечения. При этом справедливо следующее положение: если биквадратная кривая линия пересечения двух поверхностей второго порядка распадается на пару совпавших кривых 2-го порядка или на четыре совпавшие прямые, то имеется касание поверхностей по линии 2-го или 1-го порядка соответственно.
Начертательная геометрия комплексные чертежи Машиностроительное черчение