Электротехника и электроника Физические основы механики Примеры решения задач

Точки пересечения Построение разверток поверхностей Метрические характеристики Ортогональное проецирование Многогранные поверхности Кривые поверхности Комплексные чертежи плоскостей Проекции прямого угла Примеры решения


При построении развертки пирамида применяется способ треугольника. Развертка боковой поверхности пирамиды представляет собой плоскую фигуру, состоящую из треугольников - граней пирамиды и многоугольника - основания. Поэтому построение развертки пирамиды сводится к определению натуральной величины основания и граней пирамиды.

Параллельное проецирование

Если за центр проекций принять несобственную точку S пространства, то проецирующие прямые АА1, ВВ1,... будут параллельными между собой. Для их построения вместо отсутствующей на чертеже точки S задают направление проецирования s (рис. 1.4). pr2_11.JPG

Рис. 1.4

Такой вид проецирования называется параллельным, а точки А1, В1, D1... пересечения проецирующих прямых с плоскостью проекций П1 - параллельными проекциями точек А, В, D,... пространства. Очевидно, что при параллельном проецировании, так же как и при центральном, каждая точка пространства имеет на плоскости П1 одну проекцию, но эта проекция не определяет положения точки в пространстве. Следовательно, однопроекционный чертеж, полученный методом параллельного проецирования, тоже необратим (рис. 1.5). Различают прямоугольное (ортогональное) и косоугольное параллельное проецирование, в зависимости от угла, образованного направлением проецирования с плоскостью проекций. pr1_6.JPG

Рис. 1.5

Параллельное проецирование, являясь частным случаем центрального (центр проекций - несобственная точка S, задаваемая направлением s), помимо свойств, указанных в предыдущем параграфе, сохраняет еще параллельность прямых и отношение длин их отрезков. Свойства геометрических фигур, которые сохраняются при данном виде проецирования, называются его инвариантами.

Соприкасание поверхностей 2-го порядка можно рассматривать как частный случай их пересечения. При этом справедливо следующее положение: если биквадратная кривая линия пересечения двух поверхностей второго порядка распадается на пару совпавших кривых 2-го порядка или на четыре совпавшие прямые, то имеется касание поверхностей по линии 2-го или 1-го порядка соответственно.
Начертательная геометрия комплексные чертежи Машиностроительное черчение