Теория поля лекции и примеры

Скалярное поле, производная по направлению, градиент. Все физические процессы, проходящие в любой области пространства, характеризуются определёнными значениями некоторых величин. Так, нагревание тела описывается изменением температуры в точках этого тела; загнивание экономического региона характеризуется количеством остановленных в нём предприятий и т.д. Если каждой точке М некоторой области V пространства соответствует значение некоторой скалярной величины u(M), то говорят, что в области V задано скалярное поле u(M). Поле называется стационарным, если оно не меняется во времени; мы будем изучать только стационарные поля.

Частные случаи скалярных полей. Скалярное поле называется плоским, если существует такая плоскость П, что поле принимает одинаковые значения во всех точках прямой, перпендикулярной плоскости П. Другими словами, это поле устроено одинаково во всех плоскостях, параллельных плоскости П. Удачным выбором координатной системы в этом случае будет ввести её так, чтобы плоскость П была плоскостью Оху. Тогда ось Оz будет перпендикулярна П, и, по определению плоского поля, функция u(M) не должна зависеть от z, т.е. u(M) = u(х,у). Поверхности уровня этого поля - цилиндрические поверхности с образующими, перпендикулярными плоскости П; след этих поверхностей в плоскости П даст линии уровня функции u(х,у).

Дифференциальные характеристики векторного поля.

Дивергенция векторного поля

Частные случаи векторных полей.

Вычислить сумму ряда . Указание: применить формулу Парсеваля к функции f (x) = x.

Векторное поле называется однородным (или постоянным), если .

Векторное поле называется плоским, если все векторы (M) параллельны некоторой плоскости П и одинаковы вдоль каждого перпендикуляра к П. Если система координат введена так, что П совпадает с плоскостью Оху, то, очевидно, (M). Плоское поле достаточно рассматривать в пределах плоскости Оху, так как во всех плоскостях, параллельных Оху, оно одинаково. Для плоского поля , . Пример плоского поля - магнитное поле, создаваемое током I, текущим по бесконечно длинному проводнику. Если ось Oz направлена вдоль этого проводника, то вектор напряженности магнитного поля равен , это поле определено везде, кроме оси Oz.

Векторные линии. Так как вектор (M) определяется длиной и направлением в пространстве, задание в области V поля (M) равносильно заданию в V полей длин и направлений. Геометрической характеристикой, определяющей в V поле направлений, служит совокупность векторных линий.

Определение. Векторной линией поля (M) называется любая линия, которая в каждой своей точке М касается вектора (M).

В силовой интерпретации поля векторными линиями являются силовые линии поля, в гидродинамической - векторные линии есть траектории, по которым движутся частицы жидкости (линии тока).

Поток векторного поля через поверхность.

В разделе Поверхностные интегралы мы рассмотрели задачу о вычислении количества жидкости, протекающей через определённую сторону двусторонней поверхности  за единицу времени, и получили, что это количество выражается поверхностным интегралом . Имеется целый ряд физических процессов, которые описываются аналогичными поверхностными интегралами, например, магнитная индукция.

Среди других достоинств математики её мощь заключается, в частности, в способности исследовать процессы в самых разных областях естествознания, абстрагируясь от их физической сущности; приведённые выше примеры показывают естественность введения понятия потока векторного поля через поверхность.

Вычисление потока векторного поля. В соответствии с определением П,

поток может вычисляться и с помощью поверхностного интеграла первого рода, и с помощью поверхностного интеграла второго рода. В примере 2 раздела 16.4.4.3. Вычисление поверхностного интеграла второго рода было приведено вычисление потока поля  через часть плоскости , ограниченную координатными плоскостями, в том и другом представлении. Рассмотрим более сложный пример.

Теорема Остроградского. Пусть  - кусочно-гладкая замкнутая поверхность, ограничивающая область V,  - гладкое векторное поле. Тогда поток поля  через внешнюю сторону  равен тройному интегралу от дивергенции поля  по V:

.

Инвариантное определение дивергенции . В разделе 17.2.2.1. Дивергенция векторного поля мы определили дивергенцию как выражениев определённой системе координат : . Теорема Остроградского позволяет понять смысл дивергенции поля в точке М как объективного атрибута векторного поля без использования координатной системы. Пусть  - замкнутая поверхность, окружающая точку М, V - тело, заключенное внутри ,  - вектор единичной внешней нормали к . Тогда . По теореме о среднем для тройного интеграла существует точка  такая, что . Следовательно, . Отношение значения некоторой физической величины к объёму принято называть средней плотностью этой величины в объёме; если объём стягивается к точке М, предел средней плотности называется локальным значением плотности в точке М. Таким образом, мы можем трактовать   как среднюю плотность потока в объёме V.

Спб, порошковая покраска дисков.
Начертательная геометрия Машиностроительное черчение Моделирование Математика Физика