Вычисление площадей плоских областей. Вычисление площади поверхности. Тройной интеграл Поверхностный интеграл первого рода Дифференциальное исчисление функции одной переменной Производная степенно-показательной функции


Математика примеры решения заданий курсовой работы

Поверхностный интеграл первого рода (по площади поверхности).

  16.4.3.1. Определение поверхностного интеграла первого рода. Пусть в пространстве  переменных x,y,z задана кусочно-гладкая поверхность , на которой определена функция f(x,y,z). Разобьём поверхность на  частей , на каждой из частей  выберем произвольную точку , найдём  и площадь части  (которую будем обозначать тем же символом ), и составим интегральную сумму . Если существует предел последовательности интегральных сумм при , не зависящий ни от способа разбиения поверхности   на части , ни от выбора точек , то функция f(x,y,z) называется интегрируемой по поверхности , а значение этого предела называется поверхностным интегралом первого рода, или поверхностным интегралом по площади поверхности, и обозначается .

 Теорема существования. Если функция f(x,y,z) непрерывна на поверхности , то она интегрируема по этой поверхности.

16.4.3.2. Свойства поверхностного интеграла первого рода. Для этого интеграла имеют место основные шесть свойств, справедливых для определённого, двойного, тройного интеграла, от линейности до теоремы о среднем. Сформулировать и доказать их самостоятельно. Седьмое, персональное, свойство - независимость поверхностного интеграла первого рода от выбора стороны поверхности.

 16.4.3.3. Вычисление поверхностного интеграла первого рода.

16.4.3.3.1. Определение единичного вектора нормали к поверхности. Выражения для элемента площади поверхности. Предположим, что поверхность   задаётся неявным уравнением   ( - непрерывно дифференцируемая функция) и взаимно однозначно проецируется в область  на плоскости Оху. Из теории функций нескольких переменных известно, что градиент функции ортогонален поверхности уровня этой функции, проходящей через точку, в которой найден градиент. Рассматривая уравнение   как уравнение поверхности уровня функции трёх переменных , получаем, что в каждой точке поверхности   ортогонален , т.е. является нормальным к  вектором. Чтобы получить единичный нормальный вектор, достаточно просто пронормировать : , где знак перед дробью соответствует возможности выбора двух возможных взаимно противоположных направлений нормали. В координатной форме , где   - базисные орты. Если сравнить это выражение с представлением градиента через направляющие косинусы: , то , , . Теперь мы можем выразить элемент площади поверхности через элемент площади в каждой координатной плоскости: , , . В частном случае задания уравнения поверхности в явном виде  получим , т.е. , , , , поэтому , , , и . Мы уже пользовались этой формулой при вычислении площади поверхности с помощью двойного интеграла.

Из условия согласования следует, что степень матрицы определена только для квадратных матриц, а степень произведения определена для матриц прямоугольного вида. При этом число строк матрицы должно совпадать с числом столбцов матрицы . При вычислении степеней матриц и матричных выражений следует попытаться среди малых степеней найти максимально простую матрицу с тем, чтобы использовать её для упрощения вычисления матрицы .

Задание 2. Найти область сходимости ряда: Задание 3. Вычислить определенный интеграл с точностью до 0,001, разложив подынтегральную функцию в ряд и затем проинтегрировав его почленно: Задание 4. Найти три первых отличных от нуля члена разложения в степенной ряд решения дифференциального уравнения, удовлетворяющего заданному начальному условию:
Тройной интеграл в сферических координатах Механические приложения <