Обыкновенные дифференциальные уравнения Функция комплексной переменной Геометрический смысл производной. Кратные, криволинейные, поверхностные интегралы примеры Двойной интеграл Изменение порядка интегрирования


Математика примеры решения заданий курсовой работы

Кратные, криволинейные, поверхностные интегралы.

Двойной интеграл.

 16.1.1. Определение двойного интеграла. Теорема существования двойного интеграла. Пусть на плоскости Oxy задана ограниченная замкнутая область D с кусочно-гладкой границей, и пусть на области D определена функция f(x, y).

Разобьём область D произвольным образом на n подобластей D1, D2, D3, …, Dn, (не имеющих общих внутренних точек). Символом s(Di) будем обозначать площадь области Di; символом diam(D)здесь и дальше будет обозначаться наибольшее расстояние между двумя точками, принадлежащими области D: [an error occurred while processing this directive]

;

символом d обозначим наибольший из диаметров областей Di: .

В каждой из подобластей Di (i = 1,2, …, n) выберем произвольную точку Pi = (xi, yi), вычислим в этой точке значение функции f(Pi ) = f (xi, yi), и составим интегральную сумму .

 Если существует предел последовательности интегральных сумм при , не зависящий ни от способа разбиения области D на подобласти Di, ни от выбора точек Pi, то функция f(x, y) называется интегрируемой по области D, а значение этого предела называется двойным интегралом от функции f(x, y) по области D и обозначается .

 Если расписать значение f(P) через координаты точки P, и представить ds как ds = dx dy, получим другое обозначение двойного интеграла: . Итак, кратко, .

 Теорема существования двойного интеграла. Если подынтегральная функция f(x, y) непрерывна на области D, то она интегрируема по этой области.

16.1.2. Геометрический смысл двойного интеграла. Геометрический смысл каждого слагаемого интегральной суммы: если , то  - объём прямого цилиндра с основанием Di высоты f(Pi); вся интегральная сумма  - сумма объёмов таких цилиндров, т.е. объём некоторого ступенчатого тела (высота ступеньки, расположенной над подобластью Di, равна f(Pi)). Когда , это ступенчатое тело становится всё ближе к изображенному на рисунке телу, ограниченному снизу областью D, сверху - поверхностью z = f(x, y), с цилиндрической боковой поверхностью, направляющей которой является граница области D, а образующие параллельны оси Oz. Двойной интеграл  равен объёму этого тела.

ПОВЕРХНОСТНЫЙ ИНТЕГРАЛ II РОДА

Основные понятия

Поверхностный интеграл II рода строится по образцу криволинейного интеграла II рода, где направленную кривую разлагали на элементы и проектировали их на координатные оси; знак брали в зависимости от того, совпадало ли ее направление с направлением оси или нет.

Пусть задана двусторонняя поверхность (таковой является плоскость, эллипсоид, любая поверхность, задаваемая уравнением z = f(х;у), где f(х;у),   и  - функции, непрерывные в некоторой области D плоскости Оху и т. д.). После обхода такой поверхности, не пересекая ее границы, направление нормали к ней не меняется. Примером односторон­ней поверхности является так называемый лист Мебиуса, получающийся при склеивании сторон АВ и СD прямоугольника АВСD так, что точка А совмещается с точкой С, а В — с D (см. рис. 19).

Рис. 19.

Далее, пусть в точках рассматриваемой двусторонней поверхности S в пространстве Оху определена непрерывная функция f(x;y;z). Выбран­ную сторону поверхности (в таком случае говорят, что поверхность ори­ентирована) разбиваем на части Si, где i = 1, 2, …, n, и проектируем их на координатные плоскости. При этом площадь проекции  берем со знаком «плюс», если выбрана верхняя сторона поверхности, или, что то же самое, если нормаль  к выбранной стороне поверхности составляет с осью Oz острый угол (см. рис. 20, а), т. е. ; со знаком «минус», если выбрана нижняя сторона поверхности (или) (см. рис. 41, б). В этом случае интегральная сумма имеет вид

  (12.1)

где - площадь проекции Si­ на плоскость Oxy. Её отличие от интегральной суммы (11.1) очевидно.

Задача 8. В вычислительный центр коллективного пользования с тремя компьютерами поступают заказы от предприятий на вычислительные работы. Если заняты все три компьютера, то вновь поступающий заказ не принимается и предприятие вынуждено обратиться в другой вычислительный центр. Среднее время работы с одним заказом составляет 3 часа. Интенсивность потока заявок 0.25 (з/час). Найти предельные вероятности состояний и показатели эффективности работы вычислительного центра.
Приложения двойного интеграла Вычисление площадей