Обыкновенные дифференциальные уравнения Функция комплексной переменной Геометрический смысл производной. Кратные, криволинейные, поверхностные интегралы примеры Двойной интеграл Изменение порядка интегрирования


Математика примеры решения заданий курсовой работы

Теория линейных уравнений.

 Опр. Линейным дифференциальным уравнением n-го порядка называется уравнение, в которое неизвестная функция y(x) и её производные входят линейно, т.е. в первой степени:

.  (19)

 Если старший коэффициент q0 (x) отличен от нуля на интервале (a, b), т.е.  для , то, умножая (19) на , приводим уравнение к виду со старшим коэффициентом, равным 1:

  (20)

; дальше мы будем рассматривать уравнение (20). Частные производные Примеры вычисления интегралов

 Если правая часть уравнения тождественно равна нулю на рассматриваемом интервале (f(x)=0 при ), то уравнение называется однородным. Таким образом, однородное уравнение - это уравнение вида

 . (21)

Задача Коши для уравнений (20) и (21) ставится также, как и для общего уравнения n-го порядка (17) : требуется найти решение уравнения (20) или (21), удовлетворяющее начальным условиям

  (22)

где y0, y1, y2, …, yn-1 - заданные числа. Для уравнения (17) теорема существования и единственности решения задачи Коши требовала непрерывности функции   и её производных ; если привести (20) к виду (17): ,

то . Таким образом, условия теоремы Коши приводят к необходимости непрерывности функций f(x) и pi(x), i = 1, 2, …, n. Далее, вывод теоремы Коши для уравнения (17) заключался в том, что найдётся окрестность точки x0, в которой существует однозначно определённое решение задачи Коши; для линейных уравнений (20) и (21) вывод более глобален: единственное решение существует на всём интервале (a, b), на котором выполняются условия теоремы:

 Теорема существования и единственности решения задачи Коши для линейного уравнения: если функции f(x), pi(x), i = 1, 2, …, n непрерывны на интервале (a, b), x0 - произвольная точка этого интервала, то для любых начальных условий (22) существует единственная функция y(x), определённая на всём интервале (a, b) и удовлетворяющая уравнению (20) и начальным условиям (22).

 Всё дальнейшее изложение ведётся в предположении, что условия теоремы существования и единственности решения задачи Коши выполняются, даже если это не оговаривается специально.

Моменты, центр тяжести поверхности

Статические моменты, координаты центра тяжести, моменты инерции материальной поверхности S находятся по соответствующим формулам:

 

 

 

    

Задача 2. В квадрат со стороной 2 вписан квадрат, вершины которого лежат на серединах сторон большего квадрата. Найти вероятность того, что наудачу брошенная в больший квадрат точка попадет в маленький квадрат. Решение. Воспользуемся понятием геометрической вероятности. Будем искать вероятность попадания в меньший квадрат как отношение площади меньшего квадрата к площади большего квадрата.
Приложения двойного интеграла Вычисление площадей